Spatial gradient of protein phosphorylation underlies replicative asymmetry in a bacterium.
نویسندگان
چکیده
Spatial asymmetry is crucial to development. One mechanism for generating asymmetry involves the localized synthesis of a key regulatory protein that diffuses away from its source, forming a spatial gradient. Although gradients are prevalent in eukaryotes, at both the tissue and intracellular levels, it is unclear whether gradients of freely diffusible proteins can form within bacterial cells given their small size and the speed of diffusion. Here, we show that the bacterium Caulobacter crescentus generates a gradient of the active, phosphorylated form of the master regulator CtrA, which directly regulates DNA replication. Using a combination of mathematical modeling, single-cell microscopy, and genetic manipulation, we demonstrate that this gradient is produced by the polarly localized phosphorylation and dephosphorylation of CtrA. Our data indicate that cells robustly establish the asymmetric fates of daughter cells before cell division causes physical compartmentalization. More generally, our results demonstrate that uniform protein abundance may belie gradients and other sophisticated spatial patterns of protein activity in bacterial cells.
منابع مشابه
Spatial gradient of protein phosphorylation underlies replicative bacterium
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
متن کاملModularity of the Bacterial Cell Cycle Enables Independent Spatial and Temporal Control of DNA Replication
BACKGROUND Complex regulatory circuits in biology are often built of simpler subcircuits or modules. In most cases, the functional consequences and evolutionary origins of modularity remain poorly defined. RESULTS Here, by combining single-cell microscopy with genetic approaches, we demonstrate that two separable modules independently govern the temporal and spatial control of DNA replication...
متن کاملEffects of Antiproliferative Protein (APP) on Modulation of Cytosolic Protein Phosphorylation of Prostatic Carcinoma Cell Line LNCaP
Antiproliferative protein (APP) isolated from conditioned media of two androgen-independent prostatic carcinoma cell lines, PC3 and Du-145 was shown to inhibit selectively cell proliferation of androgen-dependent prostate cancer cell line LNCaP in a dose dependent manner. This protein was further purified with HPLC using hydrophobic interaction column (phenyl 5PW) and was used to study the modu...
متن کاملRegulation of the MEX-5 Gradient by a Spatially Segregated Kinase/Phosphatase Cycle
Protein concentration gradients encode spatial information across cells and tissues and often depend on spatially localized protein synthesis. Here, we report that a different mechanism underlies the MEX-5 gradient. MEX-5 is an RNA-binding protein that becomes distributed in a cytoplasmic gradient along the anterior-to-posterior axis of the one-cell C. elegans embryo. We demonstrate that the ME...
متن کاملDetermination of Sialyl trnsferase activity and effect of Phosphorylation and dephosphorylation Mechanisms
Halakhor S1, Qujeq D2, Shikhpour R3 1. Instructor, Department of Biochemistry and Biophysics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran 2. Associate professor, Department of Biochemistry and Biophysics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran 3. GP, Babol, Iran Abstract Background: Previous reports show that phosphorylation anddepho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 108 3 شماره
صفحات -
تاریخ انتشار 2011